Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Shock ; 58(6): 514-523, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2191214

ABSTRACT

ABSTRACT: Background: Severe progression of coronavirus disease 2019 (COVID-19) causes respiratory failure and critical illness. Recently, COVID-19 has been associated with heparanase (HPSE)-induced endothelial barrier dysfunction and inflammation, so called endothelitis, and therapeutic treatment with heparin or low-molecular-weight heparin (LMWH) targeting HPSE has been postulated. Because, up to this date, clinicians are unable to measure the severity of endothelitis, which can lead to multiorgan failure and concomitant death, we investigated plasma levels of HPSE and heparin-binding protein (HBP) in COVID-19 intensive care patients to render a possible link between endothelitis and these plasma parameters. Therefore, a prospective prolonged cohort study was conducted, including 47 COVID-19 patients from the intensive care unit. Plasma levels of HPSE, and HBP were measured daily by enzyme-linked immunosorbent assay in survivors (n = 35) and nonsurvivors (n = 12) of COVID-19 from admission until discharge or death. All patients were either treated with heparin or LMWH, aiming for an activated partial thromboplastin time of ≥60 seconds or an anti-Xa level of >0.8 IU/mL using enoxaparin, depending on the clinical status of the patient (patients with extracorporeal membrane oxygenation or >0.1 µg/kg/min noradrenaline received heparin, all others enoxaparin). Results: We found significantly higher plasma levels of HPSE and HBP in survivors and nonsurvivors of COVID-19, compared with healthy controls. Still, interestingly, plasma HPSE levels were significantly higher ( P < 0.001) in survivors compared with nonsurvivors of COVID-19. In contrast, plasma HBP levels were significantly reduced ( P < 0.001) in survivors compared with nonsurvivors of COVID-19. Furthermore, when patients received heparin, they had significantly lower HPSE ( P = 2.22 e - 16) and significantly higher HBP ( P = 0.00013) plasma levels as when they received LMWH. Conclusion: Our results demonstrated that patients, who recover from COVID-19-induced vascular and pulmonary damage and were discharged from the intensive care unit, have significantly higher plasma HPSE level than patients who succumb to COVID-19. Therefore, HPSE is not suitable as marker for disease severity in COVID-19 but maybe as marker for patient's recovery. In addition, patients receiving therapeutic heparin treatment displayed significantly lower heparanse plasma level than upon therapeutic treatment with LMWH.


Subject(s)
COVID-19 , Endothelium, Vascular , Glucuronidase , Lung , Vascular Diseases , Humans , Cohort Studies , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Enoxaparin , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Prospective Studies , Survivors , Glucuronidase/blood , Recovery of Function , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Vascular Diseases/diagnosis , Vascular Diseases/virology , Lung/physiopathology , Lung/virology , COVID-19 Drug Treatment
2.
J Clin Med ; 11(12)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-2080403

ABSTRACT

The sedation management of patients with severe COVID-19 is challenging. Processed electroencephalography (pEEG) has already been used for sedation management before COVID-19 in critical care, but its applicability in COVID-19 has not yet been investigated. We performed this prospective observational study to evaluate whether the patient sedation index (PSI) obtained via pEEG may adequately reflect sedation in ventilated COVID-19 patients. Statistical analysis was performed by linear regression analysis with mixed effects. We included data from 49 consecutive patients. None of the patients received neuromuscular blocking agents by the time of the measurement. The mean value of the PSI was 20 (±23). The suppression rate was determined to be 14% (±24%). A deep sedation equivalent to the Richmond Agitation and Sedation Scale of -3 to -4 (correlation expected PSI 25-50) in bedside examination was noted in 79.4% of the recordings. Linear regression analysis revealed a significant correlation between the sedative dosages of propofol, midazolam, clonidine, and sufentanil (p < 0.01) and the sedation index. Our results showed a distinct discrepancy between the RASS and the determined PSI. However, it remains unclear to what extent any discrepancy is due to the electrophysiological effects of neuroinflammation in terms of pEEG alteration, to the misinterpretation of spinal or vegetative reflexes during bedside evaluation, or to other causes.

3.
Sci Rep ; 12(1): 17423, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2077097

ABSTRACT

Acute brain injuries such as intracerebral hemorrhage (ICH) and ischemic stroke have been reported in critically ill COVID-19 patients as well as in patients treated with veno-venous (VV)-ECMO independently of their COVID-19 status. The purpose of this study was to compare critically ill COVID-19 patients with and without VV-ECMO treatment with regard to acute neurological symptoms, pathological neuroimaging findings (PNIF) and long-term deficits. The single center study was conducted in critically ill COVID-19 patients between February 1, 2020 and June 30, 2021. Demographic, clinical and laboratory parameters were extracted from the hospital's databases. Retrospective imaging modalities included head computed tomography (CT) and magnetic resonance imaging (MRI). Follow-up MRI and neurological examinations were performed on survivors > 6 months after the primary occurrence. Of the 440 patients, 67 patients received VV-ECMO treatment (15%). Sixty-four patients (24 with VV-ECMO) developed acute neurological symptoms (pathological levels of arousal/brain stem function/motor responses) during their ICU stay and underwent neuroimaging with brain CT as the primary modality. Critically ill COVID-19 patients who received VV-ECMO treatment had a significantly lower survival during their hospital stay compared to those without (p < 0.001). Among patients treated with VV-ECMO, 10% showed acute PNIF in one of the imaging modalities during their ICU stay (vs. 4% of patients in the overall COVID-19 ICU cohort). Furthermore, 9% showed primary or secondary ICH of any severity (vs. 3% overall), 6% exhibited severe ICH (vs. 1% overall) and 1.5% were found to have non-hemorrhagic cerebral infarctions (vs. < 1% overall). There was a weak, positive correlation between patients treated with VV-ECMO and the development of acute neurological symptoms. However, the association between the VV-ECMO treatment and acute PNIF was negligible. Two survivors (one with VV-ECMO-treatment/one without) showed innumerable microhemorrhages, predominantly involving the juxtacortical white matter. None of the survivors exhibited diffuse leukoencephalopathy. Every seventh COVID-19 patient developed acute neurological symptoms during their ICU stay, but only every twenty-fifth patient had PNIF which were mostly ICH. VV-ECMO was found to be a weak risk factor for neurological complications (resulting in a higher imaging rate), but not for PNIF. Although logistically complex, repeated neuroimaging should, thus, be considered in all critically ill COVID-19 patients since ICH may have an impact on the treatment decisions and outcomes.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Critical Illness/therapy , Retrospective Studies , Prevalence , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/therapy , Neuroimaging , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Cerebral Hemorrhage/etiology
4.
Sci Rep ; 12(1): 15406, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2028725

ABSTRACT

COVID-19 adds to the complexity of optimal timing for tracheostomy. Over the course of this pandemic, and expanded knowledge of the disease, many centers have changed their operating procedures and performed an early tracheostomy. We studied the data on early and delayed tracheostomy regarding patient outcome such as mortality. We performed a retrospective analysis of all tracheostomies at our institution in patients diagnosed with COVID-19 from March 2020 to June 2021. Time from intubation to tracheostomy and mortality of early (≤ 10 days) vs. late (> 10 days) tracheostomy were the primary objectives of this study. We used mixed cox-regression models to calculate the effect of distinct variables on events. We studied 117 tracheostomies. Intubation to tracheostomy shortened significantly (Spearman's correlation coefficient; rho = - 0.44, p ≤ 0.001) during the course of this pandemic. Early tracheostomy was associated with a significant increase in mortality in uni- and multivariate analysis (Hazard ratio 1.83, 95% CI 1.07-3.17, p = 0.029). The timing of tracheostomy in COVID-19 patients has a potentially critical impact on mortality. The timing of tracheostomy has changed during this pandemic tending to be performed earlier. Future prospective research is necessary to substantiate these results.


Subject(s)
COVID-19 , Tracheostomy , Humans , Length of Stay , Proportional Hazards Models , Retrospective Studies , Tracheostomy/methods
6.
Journal of Clinical Medicine ; 11(12):3494, 2022.
Article in English | MDPI | ID: covidwho-1893946

ABSTRACT

The sedation management of patients with severe COVID-19 is challenging. Processed electroencephalography (pEEG) has already been used for sedation management before COVID-19 in critical care, but its applicability in COVID-19 has not yet been investigated. We performed this prospective observational study to evaluate whether the patient sedation index (PSI) obtained via pEEG may adequately reflect sedation in ventilated COVID-19 patients. Statistical analysis was performed by linear regression analysis with mixed effects. We included data from 49 consecutive patients. None of the patients received neuromuscular blocking agents by the time of the measurement. The mean value of the PSI was 20 (±23). The suppression rate was determined to be 14% (±24%). A deep sedation equivalent to the Richmond Agitation and Sedation Scale of −3 to −4 (correlation expected PSI 25–50) in bedside examination was noted in 79.4% of the recordings. Linear regression analysis revealed a significant correlation between the sedative dosages of propofol, midazolam, clonidine, and sufentanil (p < 0.01) and the sedation index. Our results showed a distinct discrepancy between the RASS and the determined PSI. However, it remains unclear to what extent any discrepancy is due to the electrophysiological effects of neuroinflammation in terms of pEEG alteration, to the misinterpretation of spinal or vegetative reflexes during bedside evaluation, or to other causes.

7.
BMJ Open ; 12(2): e057804, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1714417

ABSTRACT

INTRODUCTION: Patients undergoing heart valve surgery are predominantly transferred postoperatively to the intensive care unit (ICU) under continuous sedation. Volatile anaesthetics are an increasingly used treatment alternative to intravenous substances in the ICU. As subject to inhalational uptake and elimination, the resulting pharmacological benefits have been repeatedly demonstrated. Therefore, volatile anaesthetics appear suitable to meet the growing demands of fast-track cardiac surgery. However, their use requires special preparation at the bedside and trained medical and nursing staff, which might limit the pharmacological benefits. The aim of our work is to assess whether the temporal advantages of recovery under volatile sedation outweigh the higher effort of special preparation. METHODS AND ANALYSIS: The study is designed to evaluate the differences between intravenous sedatives (n=48) and volatile sedatives (n=48) in continued intensive care sedation. This study will be conducted as a prospective, randomised, controlled, single-blinded, monocentre trial at a German university hospital in consenting adult patients undergoing heart valve surgery at a university hospital. This observational study will examine the necessary preparation time, staff consultation and overall feasibility of the chosen sedation method. For this purpose, the continuation of sedation in the ICU with volatile sedatives is considered as one study arm and with intravenous sedatives as the comparison group. Due to rapid elimination and quick awakening after the termination of sedation, closer consultation between the attending physician and the ICU nursing staff is required, in addition to a prolonged setup time. Study analysis will include the required setup time, time from admission to extubation as primary outcome and neurocognitive assessability. In addition, possible operation-specific (blood loss, complications), treatment parameters (catecholamine dosages, lung function) and laboratory results (acute kidney injury, acid base balance (lactataemia), liver failure) as influencing factors will be collected. The study-relevant data will be extracted from the continuous digital records of the patient data management system after the patient has been discharged from the ICU. For statistical evaluation, 95% CIs will be calculated for the median time to extubation and neurocognitive assessability, and the association will be assessed with a Cox regression model. In addition, secondary binary outcome measures will be evaluated using Fisher's exact tests. Further descriptive and exploratory statistical analyses are also planned. ETHICS AND DISSEMINATION: The study was approved by the Institutional Ethics Board of the University of Frankfurt, Germany (#20-1050). Informed consent of all individual patients will be obtained before randomisation. Results will be disseminated via publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: Clinical trials registration (NCT04958668) was completed on 1 July 2021.


Subject(s)
Cardiac Surgical Procedures , Heart Valves , Adult , Critical Care/methods , Heart Valves/surgery , Humans , Intensive Care Units , Observational Studies as Topic , Prospective Studies , Randomized Controlled Trials as Topic
8.
J Clin Med ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1648756

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) profoundly impacts hemostasis and microvasculature. In the light of the dilemma between thromboembolic and hemorrhagic complications, in the present paper, we systematically investigate the prevalence, mortality, radiological subtypes, and clinical characteristics of intracranial hemorrhage (ICH) in coronavirus disease (COVID-19) patients. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the literature by screening the PubMed database and included patients diagnosed with COVID-19 and concomitant ICH. We performed a pooled analysis, including a prospectively collected cohort of critically ill COVID-19 patients with ICH, as part of the PANDEMIC registry (Pooled Analysis of Neurologic Disorders Manifesting in Intensive Care of COVID-19). RESULTS: Our literature review revealed a total of 217 citations. After the selection process, 79 studies and a total of 477 patients were included. The median age was 58.8 years. A total of 23.3% of patients experienced the critical stage of COVID-19, 62.7% of patients were on anticoagulation and 27.5% of the patients received ECMO. The prevalence of ICH was at 0.85% and the mortality at 52.18%, respectively. CONCLUSION: ICH in COVID-19 patients is rare, but it has a very poor prognosis. Different subtypes of ICH seen in COVID-19, support the assumption of heterogeneous and multifaceted pathomechanisms contributing to ICH in COVID-19. Further clinical and pathophysiological investigations are warranted to resolve the conflict between thromboembolic and hemorrhagic complications in the future.

9.
J Clin Med ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1648373

ABSTRACT

The coronavirus pandemic continues to challenge global healthcare. Severely affected patients are often in need of high doses of analgesics and sedatives. The latter was studied in critically ill coronavirus disease 2019 (COVID-19) patients in this prospective monocentric analysis. COVID-19 acute respiratory distress syndrome (ARDS) patients admitted between 1 April and 1 December 2020 were enrolled in the study. A statistical analysis of impeded sedation using mixed-effect linear regression models was performed. Overall, 114 patients were enrolled, requiring unusual high levels of sedatives. During 67.9% of the observation period, a combination of sedatives was required in addition to continuous analgesia. During ARDS therapy, 85.1% (n = 97) underwent prone positioning. Veno-venous extracorporeal membrane oxygenation (vv-ECMO) was required in 20.2% (n = 23) of all patients. vv-ECMO patients showed significantly higher sedation needs (p < 0.001). Patients with hepatic (p = 0.01) or renal (p = 0.01) dysfunction showed significantly lower sedation requirements. Except for patient age (p = 0.01), we could not find any significant influence of pre-existing conditions. Age, vv-ECMO therapy and additional organ failure could be demonstrated as factors influencing sedation needs. Young patients and those receiving vv-ECMO usually require increased sedation for intensive care therapy. However, further studies are needed to elucidate the causes and mechanisms of impeded sedation.

10.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article in English | MEDLINE | ID: covidwho-1438630

ABSTRACT

A high incidence of thromboembolic events associated with high mortality has been reported in severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections with respiratory failure. The present study characterized post-transcriptional gene regulation by global microRNA (miRNA) expression in relation to activated coagulation and inflammation in 21 critically ill SARS-CoV-2 patients. The cohort consisted of patients with moderate respiratory failure (n = 11) and severe respiratory failure (n = 10) at an acute stage (day 0-3) and in the later course of the disease (>7 days). All patients needed supplemental oxygen and severe patients were defined by the requirement of positive pressure ventilation (intubation). Levels of D-dimers, activated partial thromboplastin time (aPTT), C-reactive protein (CRP), and interleukin (IL)-6 were significantly higher in patients with severe compared with moderate respiratory failure. Concurrently, next generation sequencing (NGS) analysis demonstrated increased dysregulation of miRNA expression with progression of disease severity connected to extreme downregulation of miR-320a, miR-320b and miR-320c. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed involvement in the Hippo signaling pathway, the transforming growth factor (TGF)-ß signaling pathway and in the regulation of adherens junctions. The expression of all miR-320 family members was significantly correlated with CRP, IL-6, and D-dimer levels. In conclusion, our analysis underlines the importance of thromboembolic processes in patients with respiratory failure and emphasizes miRNA-320s as potential biomarkers for severe progressive SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/genetics , MicroRNAs/genetics , Respiratory Insufficiency/etiology , Respiratory Insufficiency/genetics , Aged , Aged, 80 and over , Blood Coagulation , COVID-19/blood , Disease Progression , Down-Regulation , Female , Humans , Inflammation/blood , Inflammation/etiology , Inflammation/genetics , Male , MicroRNAs/blood , Middle Aged , Respiratory Insufficiency/blood , SARS-CoV-2/isolation & purification , Severity of Illness Index
11.
Ophthalmologe ; 117(7): 602-608, 2020 Jul.
Article in German | MEDLINE | ID: covidwho-1384398

ABSTRACT

Early ophthalmological care of patients in intensive care with SARS-CoV­2 (Severe-Acute-Respiratory-Syndrom-Corona-Virus-2) infections is very time-consuming; however, this approach might prevent other ophthalmological diseases, such as lagophthalmos. There is no difference in ophthalmological treatment between SARS-CoV­2 positive and other intensive care patients. Due to the small number of cases in our observational study, a specific ophthalmological clinical pattern related to SARS-CoV­2 infections cannot currently be identified; however, the increased occurrence of subconjunctival hemorrhage in intensive care SARS-CoV­2 patients is remarkable. It remains unclear how ocular symptoms in SARS-CoV­2 infections are related or how they occur in different stages of the disease. Therefore, further studies are necessary for representative statements.


Subject(s)
Betacoronavirus , Coronavirus Infections , Eye Diseases , Pandemics , Pneumonia, Viral , COVID-19 , Humans , Intensive Care Units , SARS-CoV-2
12.
Crit Care ; 25(1): 295, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1362062

ABSTRACT

BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict "survival". Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients' age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration "ClinicalTrials" (clinicaltrials.gov) under NCT04455451.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Electronic Health Records/statistics & numerical data , Intensive Care Units , Machine Learning , Adult , Aged , COVID-19/therapy , Cohort Studies , Critical Illness/therapy , Emergency Service, Hospital , Female , Germany , Humans , Male , Middle Aged , Outcome Assessment, Health Care
13.
PLoS One ; 16(7): e0253778, 2021.
Article in English | MEDLINE | ID: covidwho-1327974

ABSTRACT

BACKGROUND: Therapy of severely affected coronavirus patient, requiring intubation and sedation is still challenging. Recently, difficulties in sedating these patients have been discussed. This study aims to describe sedation practices in patients with 2019 coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). METHODS: We performed a retrospective monocentric analysis of sedation regimens in critically ill intubated patients with respiratory failure who required sedation in our mixed 32-bed university intensive care unit. All mechanically ventilated adults with COVID-19-induced ARDS requiring continuously infused sedative therapy admitted between April 4, 2020, and June 30, 2020 were included. We recorded demographic data, sedative dosages, prone positioning, sedation levels and duration. Descriptive data analysis was performed; for additional analysis, a logistic regression with mixed effect was used. RESULTS: In total, 56 patients (mean age 67 (±14) years) were included. The mean observed sedation period was 224 (±139) hours. To achieve the prescribed sedation level, we observed the need for two or three sedatives in 48.7% and 12.8% of the cases, respectively. In cases with a triple sedation regimen, the combination of clonidine, esketamine and midazolam was observed in most cases (75.7%). Analgesia was achieved using sufentanil in 98.6% of the cases. The analysis showed that the majority of COVID-19 patients required an unusually high sedation dose compared to those available in the literature. CONCLUSION: The global pandemic continues to affect patients severely requiring ventilation and sedation, but optimal sedation strategies are still lacking. The findings of our observation suggest unusual high dosages of sedatives in mechanically ventilated patients with COVID-19. Prescribed sedation levels appear to be achievable only with several combinations of sedatives in most critically ill patients suffering from COVID-19-induced ARDS and a potential association to the often required sophisticated critical care including prone positioning and ECMO treatment seems conceivable.


Subject(s)
COVID-19/complications , Critical Illness , Hypnotics and Sedatives/pharmacology , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , Adult , Aged , Dose-Response Relationship, Drug , Female , Humans , Hypnotics and Sedatives/therapeutic use , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , Time Factors
14.
Anesthesiology ; 134(3): 457-467, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1075617

ABSTRACT

BACKGROUND: The hemostatic balance in patients with coronavirus disease 2019 (COVID-19) seems to be shifted toward a hypercoagulable state. The aim of the current study was to assess the associated coagulation alterations by point-of-care-diagnostics, focusing on details of clot formation and lysis in these severely affected patients. METHODS: The authors' prospective monocentric observational study included critically ill patients diagnosed with COVID-19. Demographics and biochemical data were recorded. To assess the comprehensive hemostatic profile of this patient population, aggregometric (Multiplate) and viscoelastometric (CloPro) measures were performed in the intensive care unit of a university hospital at a single occasion. Coagulation analysis and assessment of coagulation factors were performed. Data were compared to healthy controls. RESULTS: In total, 27 patients (21 male; mean age, 60 yr) were included. Impedance aggregometry displayed no greater platelet aggregability in COVID-19 in comparison with healthy controls (area under the curve [AUC] in adenosine diphosphate test, 68 ± 37 U vs. 91 ± 29 U [-27 (Hodges-Lehmann 95% CI, -48 to -1); P = 0.043]; AUC in arachidonic acid test, 102 ± 54 U vs. 115 ± 26 U [-21 (Hodges-Lehmann 95% CI, -51 to 21); P = 0.374]; AUC in thrombin receptor activating peptide 6 test, 114 ± 61 U vs. 144 ± 31 U [-31 (Hodges-Lehmann 95% CI, -69 to -7); P = 0.113]). Comparing the thromboelastometric results of COVID-19 patients to healthy controls, the authors observed significant differences in maximum clot firmness in fibrin contribution to maximum clot firmness assay (37 ± 11 mm vs. 15 ± 4 mm [21 (Hodges-Lehmann 95% CI, 17 to 26); P < 0.001]) and lysis time in extrinsic activation and activation of fibrinolysis by tissue plasminogen activator assay (530 ± 327 s vs. 211 ± 80 s [238 (Hodges-Lehmann 95% CI, 160 to 326); P < 0.001]). CONCLUSIONS: Thromboelastometry in COVID-19 patients revealed greater fibrinolysis resistance. The authors did not find a greater platelet aggregability based on impedance aggregometric tests. These findings may contribute to our understanding of the hypercoagulable state of critically ill patients with COVID-19.


Subject(s)
COVID-19 , Fibrinolysis , Critical Illness , Humans , Male , Middle Aged , Platelet Aggregation , Prospective Studies , SARS-CoV-2 , Thrombelastography , Tissue Plasminogen Activator
15.
Front Med (Lausanne) ; 7: 599533, 2020.
Article in English | MEDLINE | ID: covidwho-1005805

ABSTRACT

Background: Proportions of patients dying from the coronavirus disease-19 (COVID-19) vary between different countries. We report the characteristics; clinical course and outcome of patients requiring intensive care due to COVID-19 induced acute respiratory distress syndrome (ARDS). Methods: This is a retrospective, observational multicentre study in five German secondary or tertiary care hospitals. All patients consecutively admitted to the intensive care unit (ICU) in any of the participating hospitals between March 12 and May 4, 2020 with a COVID-19 induced ARDS were included. Results: A total of 106 ICU patients were treated for COVID-19 induced ARDS, whereas severe ARDS was present in the majority of cases. Survival of ICU treatment was 65.0%. Median duration of ICU treatment was 11 days; median duration of mechanical ventilation was 9 days. The majority of ICU treated patients (75.5%) did not receive any antiviral or anti-inflammatory therapies. Venovenous (vv) ECMO was utilized in 16.3%. ICU triage with population-level decision making was not necessary at any time. Univariate analysis associated older age, diabetes mellitus or a higher SOFA score on admission with non-survival during ICU stay. Conclusions: A high level of care adhering to standard ARDS treatments lead to a good outcome in critically ill COVID-19 patients.

16.
Eur J Anaesthesiol ; 38(4): 344-347, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-990848

ABSTRACT

BACKGROUND: In light of the coronavirus disease-2019 (COVID-19) pandemic, how resources are managed and the critically ill are allocated must be reviewed. Although ethical recommendations have been published, strategies for dealing with overcapacity of critical care resources have so far not been addressed. OBJECTIVES: Assess expert opinion for allocation preferences regarding the growing imbalance between supply and demand for medical resources. DESIGN: A 10-item questionnaire was developed and sent to the most prominent members of the European Society of Anaesthesiology and Intensive Care (ESAIC). SETTING: Survey via a web-based platform. PATIENTS: Respondents were members of the National Anaesthesiologists Societies Committee and Council Members of the ESAIC; 74 of 80 (92.5%), responded to the survey. MEASUREMENTS AND MAIN RESULTS: Responses were analysed thematically. The majority of respondents (83.8%), indicated that resources for COVID-19 were available at the time of the survey. Of the representatives of the ESAIC governing bodies, 58.9% favoured an allocation of excess critical care capacity: 69% wished to make them available to supraregional patients, whereas 30.9% preferred to keep the resources available for the local population. Regarding the type of distribution of resources, 35.3% preferred to make critical care available, 32.4% favoured the allocation of medical equipment and 32.4% wished to support both options. The majority (59.5%) supported the implementation of a central European institution to manage such resource allocation. CONCLUSION: Experts in critical care support the allocation of resources from centres with overcapacity. The results indicate the need for centrally administered allocation mechanisms that are not based on ethically disputable triage systems. It seems, therefore, that there is wide acceptance and solidarity among the European anaesthesiological community that local medical and human pressure should be relieved during a pandemic by implementing national and international re-allocation strategies among healthcare providers and healthcare systems.


Subject(s)
Anesthesiologists , COVID-19/therapy , Health Care Rationing/organization & administration , Health Resources/supply & distribution , Pandemics , Resource Allocation , SARS-CoV-2 , Triage , COVID-19/epidemiology , Critical Care , Delivery of Health Care , Europe/epidemiology , European Union , Health Personnel , Humans , Surveys and Questionnaires
18.
Crit Care Explor ; 2(10): e0256, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-900568

ABSTRACT

OBJECTIVES: The ongoing coronavirus pandemic is challenging, especially in severely affected patients who require intubation and sedation. Although the potential benefits of sedation with volatile anesthetics in coronavirus disease 2019 patients are currently being discussed, the use of isoflurane in patients with coronavirus disease 2019-induced acute respiratory distress syndrome has not yet been reported. DESIGN: We performed a retrospective analysis of critically ill patients with hypoxemic respiratory failure requiring mechanical ventilation. SETTING: The study was conducted with patients admitted between April 4 and May 15, 2020 to our ICU. PATIENTS: We included five patients who were previously diagnosed with severe acute respiratory syndrome coronavirus 2 infection. INTERVENTION: Even with high doses of several IV sedatives, the targeted level of sedation could not be achieved. Therefore, the sedation regimen was switched to inhalational isoflurane. Clinical data were recorded using a patient data management system. We recorded demographical data, laboratory results, ventilation variables, sedative dosages, sedation level, prone positioning, duration of volatile sedation and outcomes. MEASUREMENTS & MAIN RESULTS: Mean age (four men, one women) was 53.0 (± 12.7) years. The mean duration of isoflurane sedation was 103.2 (± 66.2) hours. Our data demonstrate a substantial improvement in the oxygenation ratio when using isoflurane sedation. Deep sedation as assessed by the Richmond Agitation and Sedation Scale was rapidly and closely controlled in all patients, and the subsequent discontinuation of IV sedation was possible within the first 30 minutes. No adverse events were detected. CONCLUSIONS: Our findings demonstrate the feasibility of isoflurane sedation in five patients suffering from severe coronavirus disease 2019 infection. Volatile isoflurane was able to achieve the required deep sedation and reduced the need for IV sedation.

SELECTION OF CITATIONS
SEARCH DETAIL